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ABSTRACT

A well-known problem in high-resolution ensembles has been a lack of sufficient spread among members.

Modelers often have used mixed physics to increase spread, but this can introduce problems including

computational expense, clustering of members, and members that are not all equally skillful. Thus, a detailed

examination of the impacts of using mixed physics is important. The present study uses two years of Com-

munity Leveraged Unified Ensemble (CLUE) output to isolate the impact of mixed physics in 36-h forecasts

made using a convection-permitting ensemble with 3-km horizontal grid spacing. One 10-member subset of

the CLUE used only perturbed initial conditions (ICs) and lateral boundary conditions (LBCs) while another

10-member ensemble used the same mixed ICs and LBCs but also introduced mixed physics. The cases

examined occurred during NOAA’s Hazardous Weather Testbed Spring Forecast Experiments in 2016 and

2017. Traditional gridpoint metrics applied to each member and the ensemble as a whole, along with object-

based verification statistics for all members, were computed for composite reflectivity and 1- and 3-h accu-

mulated precipitation using the Model Evaluation Tools (MET) software package. It is found that the mixed

physics increases variability substantially among the ensemble members, more so for reflectivity than pre-

cipitation, such that the envelope of members is more likely to encompass the observations. However, the

increased variability is mostly due to the introduction of both substantial high biases in members using one

microphysical scheme, and low biases in other schemes. Overall ensemble skill is not substantially different

from the ensemble using a single physics package.

1. Introduction

Because of the uncertainty present in weather fore-

casts, ensemble forecasting has become an essential part

of operational forecasting (e.g., Tracton and Kalnay

1993; Molteni et al. 1996; Du et al. 2003; Buizza et al.

2007). At first, ensemble systems were introduced to

provide additional guidance, such as a measure of un-

certainty and mean values, for global-scale forecasts

(e.g., Toth and Kalnay 1993) emphasizing medium

and longer time ranges, with the ensemble members

using perturbed initial conditions (ICs), and when ap-

plied to regional domains, perturbed lateral boundary

conditions (LBCs). Increasingly often, ensemble

systems are being used with convection-allowing

horizontal grid spacing with applications toward

quantitative precipitation forecasts (QPF) and severe

weather (e.g., Clark et al. 2012; Gallo et al. 2016; Clark

et al. 2018).

It has been shown that some of the same techniques

used to create the ensemble members for global models

through perturbed IC/LBCs do not provide enough

spread for the high-resolution forecasts that emphasize

shorter time ranges, and thus these ensemble systems

have often used mixed physics in an effort to increase

the spread in these forecasts (e.g., Stensrud et al. 2000;

Hacker et al. 2011; Berner et al. 2011, 2015). Although

the increase in spread may result in a more useful en-

semble forecast better able to capture the observed

precipitation or severe weather-producing event, thereCorresponding author: William A. Gallus Jr., wgallus@iastate.edu
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are theoretical and practical disadvantages to using this

mixed physics approach. Often, the different physics

schemes result in systematic biases (e.g., Jankov et al.

2017), and clustering of members can occur (Johnson

et al. 2011) where members using, for instance, the same

microphysics schemes resemble each other more than

they resemble the observations or any other members

using different microphysics schemes (e.g., Stensrud

et al. 2000). In addition, development and maintenance

of a suite of different physics schemes is resource

intensive.

Because techniques such as ensemble Kalman filters

(e.g., Houtekamer and Mitchell 1998; Johnson et al.

2015) have gained use in recent years to create per-

turbed IC/LBCs, it is worth exploring whether the use of

mixed physics packages in convection-allowing ensem-

bles provides enough benefits to justify the continued

use of this approach in spite of the problems. The

Community Leveraged Unified Ensemble (CLUE), first

employed to assist the NOAA Hazardous Weather

Testbed Spring Forecast Experiment (HWT-SFE) in

2016, is a collaboratively run ensemble of over 60

members, designed to allow exploration of questions

relating to ensemble construction (Clark et al. 2018)

such as ‘‘what is the impact of addingmixed physics to an

ensemble already making use of perturbed IC/LBCs?’’

The present study uses 3-km CLUE output from both

2016 and 2017 from the two subensembles that both

use perturbed IC/LBCs with one also including mixed

physics to determine the impact of using mixed physics

in a convection-allowing grid spacing ensemble. Section

2 discusses the methodology, section 3 presents the re-

sults, and section 4 offers the conclusions and discussion.

2. Methodology

To explore the impact of mixed physics within an

ensemble, 9 members of a CLUE subensemble using the

same physics schemes but with member variability

coming from IC and LBC perturbations (hereafter

known as S-Phys, see Table 1) and 9 members of a dif-

ferent CLUE subensemble using the same IC/LBC

perturbations as S-Phys but also employing mixed

physics (hereafter known as Core, see Table 2) were

examined from the NOAA HWT-SFE in 2016. Addi-

tionally, 10 members from similar ensembles were

compared in 2017 (Tables 3 and 4). Although the en-

sembles were designed to contain 10 members in both

years, in 2016 S-Phys was missing member 6, thus,

member 2 was eliminated from Core to allow an equal

number of members to be compared. This particular

Core member was chosen to be neglected because it was

the only member not using the North American Meso-

scale Model (NAM) for its ICs and LBCs and the Noah

TABLE 1. Specifications for the S-Phys single physics ensemble in 2016. NAM refers to 12-kmNAMoutput with ‘‘a’’ being analysis and

‘‘f’’ forecast; 3DVAR refers to ARPS3DVAR and cloud analysis. Model names appended with ‘‘pert’’ refer to perturbations extracted

from a 16-km grid-spacing SREF member.

Member IC LBC Microphysics LSM PBL Model

1 NAMa13DVAR NAMf Thompson Noah MYJ arw

2 1 1 arw-p1_pert arw-p1 Thompson Noah MYJ arw

3 1 1 arw-n1_pert arw-n1 Thompson Noah MYJ arw

4 1 1 arw-p2_pert arw-p2 Thompson Noah MYJ arw

5 1 1 arw-n2_pert arw-n2 Thompson Noah MYJ arw

7 1 1 nnmb-p1_pert nmmb-p1 Thompson Noah MYJ arw

8 1 1 nmmb-n1_pert nmmb-n1 Thompson Noah MYJ arw

9 1 1 nmmb-p2_pert nmmb-p2 Thompson Noah MYJ arw

10 1 1 nmmb-n2_pert nmmb-n2 Thompson Noah MYJ arw

TABLE 2. Specifications for the Core mixed physics ensemble in 2016. Notations as in Table 1.

Member IC LBC Microphysics LSM PBL Model

1 NAMa13DVAR NAMf Thompson Noah MYJ arw

3 1 1 arw-p1_pert arw-p1 P3 Noah YSU arw

4 1 1 arw-n1_pert arw-n1 MY Noah MYNN arw

5 1 1 arw-p2_pert arw-p2 Morrison Noah MYJ arw

6 1 1 arw-n2_pert arw-n2 P3 Noah YSU arw

7 1 1 nnmb-p1_pert nmmb-p1 MY Noah MYNN arw

8 1 1 nmmb-n1_pert nmmb-n1 Morrison Noah YSU arw

9 1 1 nmmb-p2_pert nmmb-p2 P3 Noah MYJ arw

10 1 1 nmmb-n2_pert nmmb-n2 Thompson Noah MYNN arw
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land surface model (Mitchell et al. 2001). All CLUE

ensemble members used the Weather Research and

Forecasting (WRF) Model (Skamarock et al. 2008)

with the Advanced Research version of WRF (ARW)

dynamic core over a continental United States domain

having 3-km horizontal grid spacing. No convective

parameterization was used. Simulations were initial-

ized at 0000 UTC for all cases and integrated for 36 h.

In 2016, the S-Phys ensemble used the Thompson

(Thompson et al. 2008) microphysics with the Noah

LSM and Mellor–Yamada–Janjić (MYJ; Janjić 1994)

PBL schemes. These were also the schemes used in the

control member within Core. In Core, the varied mi-

crophysics included the Predicted Particle Property (P3;

Morrison and Milbrandt 2015), Milbrandt–Yau (MY;

Milbrandt et al. 2008) and Morrison (Morrison et al.

2009) schemes, and PBL scheme variations included

Mellor–Yamada–Nikanishi–Niino (MYNN; Nakanishi

and Niino 2009) and Yonsei University (YSU; Hong

et al. 2006). Both ensembles used a mixture of initial

conditions and lateral boundary conditions. In 2016,

all members used in the present study were initialized

using the NAM and radar data assimilation via the

ARPS 3DVAR (Xue et al. 2003, Hu et al. 2006) system,

but with variations from the control member coming

through use of perturbations from the Short-Range

Ensemble Forecast (SREF; Du et al. 2003) added to

the control initial conditions. Similar IC/LBCs were

used for members 1 and 3–6 in 2017. Conversely, Core

members 2 and 7–10 in 2017 differed in their IC/LBCs

by using Rapid Refresh (RAP) (Benjamin et al. 2016)

analyses with the Global Forecasting System (GFS)

supplying the LBCs. Also noteworthy for 2017 was the

switch to the MYNN PBL scheme and RUC land

surface scheme (Smirnova et al. 1997) in all S-Phys

members.

To evaluate the impacts of usingmixed physics,Model

Evaluation Tools (MET) software package version 6.1

(Bullock et al. 2017) and METviewer (a database

and display system) were used to evaluate the ensem-

bles. Verification was performed using Multi-Radar

Multi-Sensor (MRMS; Zhang et al. 2016) observations.

MRMS uses radar-based data integrated with surface

and upper-air observations, satellite data, lightning ob-

servations, and rain gauge observations to generate a

suite of severe weather and quantitative precipitation

estimation (QPE) products at very high spatial (1 km)

resolution (Zhang et al. 2016). The MRMS data were

regridded to the model integration domain to allow

for grid-to-grid comparisons. Budget interpolation was

used for the QPE field with nearest neighbor employed

for the composite reflectivity regridding. The budget

TABLE 3. Specifications for the S-Phys single physics ensemble in 2017. Notation same as in Table 1, with RAPa referring to 13-km RAP

analysis, and GFSf referring to 1800 UTC initialized GFS forecasts.

Member IC LBC Microphysics LSM PBL Model

1 RAPa13DVAR GFSf Thompson RUC MYNN arw

2 NAMa13DVAR NAMf Thompson RUC MYNN arw

3 1 1 arw-p1_pert arw-p1 Thompson RUC MYNN arw

4 1 1 arw-n1_pert arw-n1 Thompson RUC MYNN arw

5 1 1 nmmb-p1_pert nmmb-p1 Thompson RUC MYNN arw

6 1 1 nmmb-n1_pert nmmb-n1 Thompson RUC MYNN arw

7 2 1 arw-p2_pert arw-p2 Thompson RUC MYNN arw

8 2 1 arw-n2_pert arw-n2 Thompson RUC MYNN arw

9 2 1 nmmb-p2_pert nmmb-p2 Thompson RUC MYNN arw

10 2 1 nmmb-n2_pert nmmb-n2 Thompson RUC MYNN arw

TABLE 4. Specifications for the Core mixed physics ensemble in 2017. Notations as in Table 3.

Member IC LBC Microphysics LSM PBL Model

1 NAMa13DVAR NAMf Thompson Noah MYJ arw

2 RAPa13DVAR GFSf Thompson RUC MYNN arw

3 1 1 arw-p1_pert arw-p1 P3 Noah YSU arw

4 1 1 arw-n1_pert arw-n1 MY Noah MYNN arw

5 1 1 nmmb-p1_pert nmmb-p1 Morrison Noah MYJ arw

6 1 1 nmmb-n1_pert nmmb-n1 P3 Noah YSU arw

7 2 1 arw-p2_pert arw-p2 MY Noah MYNN arw

8 2 1 arw-n2_pert arw-n2 Morrison Noah YSU arw

9 2 1 nmmb-p2_pert nmmb-p2 P3 Noah MYJ arw

10 2 1 nmmb-n2_pert nmmb-n2 Thompson Noah MYNN arw
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interpolation method, also known as nearest-neighbor

averaging, is a way of conserving the total area-

average variable value (Wolff et al. 2014). In the

present study, three fields were assessed, including 1-h

precipitation, 3-h precipitation, and composite re-

flectivity (CREF) computed directly in WRF so as to

be consistent with the assumptions used in each

microphysical scheme.

Several types of verification metrics were applied. A

deterministic verification using traditional grid-to-

grid comparisons, including Gilbert skill score (GSS;

Schaefer 1990) and frequency bias, was computed for

each member of the two ensembles. Averages were

taken of the members to evaluate how the mixed

physicsmight be impacting general skill and areal coverage

of reflectivity or precipitation above specified thresholds

within its members compared to the S-Phys members.

GSS is the fractionof observedand/or forecast events that

were correctly predicted, adjusted for hits associated with

random chance. GSS values can range from 21/3 to 1,

with a no-skill forecast having a value of 0 and a perfect

forecast being equal to 1. Frequency bias is the ratio of the

frequency of forecast events to observed events (or total

forecast area divided by total observed area) and indicates

whether there is anunderforecast (,1)or overforecast (.1)

of an event; an unbiased forecast has a frequency bias of 1.

In addition, object-based spatial verification was

performed on each member using the Method for

Object-based Diagnostic Evaluation (MODE; Davis

et al. 2006a, 2006b, 2009) tool, and averages of MODE

FIG. 1. GSS for each member of (left) Core and (right) S-Phys for 2016 for (top) 1-h precipitation $ 0.254mm and (bottom)

CREF$ 20 dBZ. In Core, red indicatesmember 1, dark blue 3, dark purple 4, dark green 5, blue 6, light purple 7, light green 8, light blue 9,

and dark red 10 (see Table 2 for configuration details). In S-Phys, red is member 1, dark blue 2, dark purple 3, dark green 4, blue 5, light

purple 7, light green 8, light blue 9, and dark red 10 (see Table 1 for configuration details). Colors for Core are grouped by microphysics

scheme: Thompson in shades of red, P3 in shades of blue, MY in shades of purple, and Morrison in shades of green. The vertical bars

represent 95% CIs for selected curves (core01 in all, core04 in top left, and core06 in bottom left).
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attributes were computed for each ensemble, loosely

following Gallus (2010). These attributes included the

area and displacement of the objects, median and 90th

percentile values, intensity sum, and counts of objects.

Objects were defined using 1- and 3-h accumulated

rainfall thresholds of 0.254, 2.54, and 6.35mm at grid

points, and composite reflectivity thresholds of 20, 30,

and 40 dBZ. Finally, standard ensemble verification

was performed on the probabilistic forecasts using

measures such as receiver operating characteristic

(ROC) areas, reliability (measure of the average dif-

ference between forecast probability and observed

frequency), and Brier score (measure of the mean

squared probability error).

For most of the metrics described above, confidence

intervals (CIs) at the 95% level were applied to estimate

the uncertainty associated with sampling variability. A

conservative estimate of statistical significance can then be

used whereby differences are statistically significant at the

95% level if the confidence intervals associated with dif-

ferent ensembles or individual members do not overlap.

This method was used for frequency bias and all MODE

attributes. However, for GSS, a more robust pairwise dif-

ference approach was applied to measure statistical sig-

nificance. The CIs were computed using the appropriate

statistical method (Gilleland 2010), with bootstrapping

used forGSS and frequency bias, and standard error about

the median for all MODE attributes. For the standard

error algorithm, a normal distribution is assumed and

the variance of the sample is considered. Bootstrapping

provides an estimate of uncertainty using a numerical re-

sampling method. In the present study, resampling with

replacement was performed 1000 times. Observational

uncertainty was not considered in this study.

The HWT-SFE 2016 ran from 2 May to 3 June, with

model output only available from the weekday portions

FIG. 2. Frequency bias for 2016 output for (left) Core and (right) S-Phys for (top) $20- and (bottom) $40-dBZ CREF threshold.

Individual Core member and S-Phys member physics schemes are as indicated in Fig. 1. The vertical bars represent 95% CIs for selected

curves (core01 in all, core06 and core08 in top left, s-phys08 in right panels, and core06 and core07 in bottom right).
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of that period. Similarly, in 2017 the project ran from

1 May to 2 June during the weekdays. Because some of

the composite reflectivity data from runs using the MY

microphysics scheme in 2016 was corrupted, the size of

the dataset that could be used for CREF was reduced.

Likewise, in 2017, a problem prevented S-Phys from

being run during the first part of the project. In the end, a

total of 22 cases were available for comparison of pre-

cipitation data, 17 cases for comparison of CREF in

2016, and only 12 cases in 2017 for both fields (the case

size represents events for which output was available

from both ensembles in each year).

In addition to the comparisons that could be per-

formed using MET, one other comparison was made for

the 2016 ensembles. For a subset of 10 cases with rela-

tively pristine convective initiation (new convection

forming at least 100 km away from existing convection),

differences in the ensemble prediction of this initiation

were evaluated. Location and timing were studied using

each member of both ensembles to understand differ-

ences in both skill and variability of solutions.

3. Results

The impacts of using mixed physics were determined

by applying multiple verification strategies including

grid-to-grid measures applied to individual members,

the same metrics averaged for all ensemble members,

FIG. 3. As in Fig. 2, but for 2017. In Core, light red indicates member 1, red 2, dark blue 3, dark purple 4, dark green 5, blue 6, light purple

7, light green 8, light blue 9, and dark red 10 (see Table 4 for configuration details). In S-Phys, red is Coremember 2, light red 2, dark blue 3,

dark purple 4, dark green 5, blue 6, light purple 7, light green 8, light blue 9, and dark red 10 (see Table 3 for configuration details). Colors

for Core are grouped by microphysics scheme: Thompson in shades of red, P3 in shades of blue, MY in shades of purple, and Morrison in

shades of green. The vertical bars represent 95% CIs for selected curves (core07 and core10 in top left, core02 and s-phys10 in top right,

core07, core09, and core10 in bottom left, and core02 in bottom right).
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MODE attributes, and traditional ensemble metrics

making use of probability values. In the discussion be-

low, emphasis will be on 1-h precipitation and CREF. In

general, 3-h precipitation behaved similarly to 1-h pre-

cipitation, except results exhibited more skill as would

be expected for a longer time period.

a. Grid-to-grid metrics

GSS computed for both a threshold of$0.254mm for

1-h precipitation and $20dBZ for CREF for the 2016

output is shown in Fig. 1. For precipitation, the variation

in GSS values was only slightly larger in Core than in

S-Phys, and the control member usually had the highest

skill at most times for both ensemble subsets (red

curve). Although the two CIs shown in Fig. 1a have a

very small amount of overlap at most times, the more

robust pairwise difference test applied to these results

(not shown) found the control member to have sig-

nificantly higher GSSs at all times after hour 10

compared to almost all other members. Results for a

threshold of $2.54mm were similar but with values

roughly 30%–40% lower at all times (not shown).

Ideally, each member of an ensemble should be

equally likely to verify, so there should be very little

variation in a metric like GSS. However, for CREF,

the variation in scores was noticeably larger in Core,

and this increased difference comes about by having

several members that are performing much more

poorly than any member of S-Phys. Throughout the

forecast period, members with P3 microphysics ten-

ded to have significantly lower GSS values than

members employing other microphysics schemes. As

with precipitation, the control member usually had

the highest skill, significantly higher than all P3 and

Morrison members at most times after hour 9 according

to pairwise difference tests (not shown). In 2017 (not

shown), the differences in GSS values by member for

CREF were greatly reduced, and the values themselves

were comparable to those of the majority of members

in 2016 whose values were clustered just below that of

the control run.

Frequency bias for 1-h precipitation thresholds

of $2.54 and $6.35mm (not shown) showed a more

noticeable increase in score variations in the Core en-

semble, along with many members of both ensembles

often having too large of areal coverage at those

thresholds. The same trends occurred in both 2016 and

2017. Frequency bias for CREF clearly indicated more

variation in the metric among the members of Core

than S-Phys, with additional differences between the

2016 (Fig. 2) and 2017 output (Fig. 3). In 2016, for

the $20-dBZ threshold, all P3 members often signifi-

cantly underpredicted areal coverage (frequency bias

less than one) while most other members of Core sig-

nificantly overpredicted at almost all times (except those

using the Morrison microphysics), with frequency bias

values greater than one. The control member nearly

always exhibited the greatest overprediction, and it was

often significantly larger than that of other members. At

this same threshold, frequency bias values of all S-Phys

members were more consistent with the control mem-

ber. For a$40-dBZ threshold in 2016, theMYmembers

had a very large overprediction, significantly larger than

all other members at most times, and behaved notably

differently from the other members, many of which ex-

hibited an underprediction at most times. The tendency

for the MY scheme to produce too high of reflectivity

values within too broad convective cores had been noted

FIG. 4. Median 1-h precipitation value (mm) for both ensembles in 2016 for (left) Core and (right) S-Phys for the$2.54-mm threshold.

Colors of curves representing different members follow same notation as in Fig. 1, with observations in black and the ensemble average

represented by a dashed dark gray line. The vertical bars represent 95% CIs for selected curves (core01 and ensemble average in both).
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in Morrison et al. 2015), and attributed to too much

graupel and excessive size sorting of hail. A clear diurnal

signal in all members can be seen in the frequency bias

values for the $40-dBZ threshold with higher values

noted during the afternoon/evening hours (i.e., during

typical convectively active periods) than at other times.

This signal was also present in the precipitation fields

(not shown) but does not show up for the lower CREF

threshold of$20dBZ (Fig. 2). In general, S-Physmembers

as a whole were more often closer to a value of 1 (un-

biased) than Core members.

In 2017, Core again had a much larger variation in

frequency bias values among members than S-Phys,

and for $20 dBZ (Fig. 3), with statistically significant

differences between the MY and several Thompson

and P3 members at most times. In these cases, the

control member no longer typically exhibited the

highest overprediction, implying a reduction in areal

coverage in the members due to the use of the different

land surface and PBL schemes in 2017. The P3 members

also did not have the underprediction problem that was

present in 2016, as a change had been made to the scheme

to improve the areal coverage of stratiform rain based

upon 2016 SFE observations of a dry bias (J. Milbrandt,

Environment and Climate Change Canada, 2019,

personal communication). In addition, all S-Physmembers

had reduced frequency bias values compared to 2016,

though the temporal behavior looked similar. For

$40dBZ, the MY members still had a significantly high

overprediction, significantly higher than many members

at most times, and were joined by the P3 members. A

large change was evident in S-Phys at$40dBZ for 2017

where a significant overprediction was present in most

members at several lead times.

FIG. 5. Median CREF value (dBZ) for all members of (left) Core and (right) S-Phys for (top) 2016 and (bottom) 2017 for the$30-dBZ

threshold. Colors of curves representing differentmembers follow same notation as in Fig. 1 for 2016 and Fig. 3 for 2017, with observations

in black and the ensemble average represented by a dark gray dashed line. The vertical bars represent 95%CIs for selected curves (core01

in all, with core04 added in left panels).
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b. MODE verification

Several different object attributes were compared

using MODE for the two ensembles in both years. The

MODE settings are listed here with the select settings

defined in parentheses. A convolution threshold

(conv_thresh) of $2.54mm was applied to identify

the forecast and observation objects and a circular

smoother (conv_radius) of 5 grid points was used. In

addition, the following fuzzy engine weights were

used: centroid distance (2), boundary distance (4), the

distance between object orientation angles (1), the

ratio of the object area (1), and the intersection area

ratio (1). For 1-h precipitation, the median value

based on a threshold of $2.54mm to define the object

areas (Fig. 4) shows greater variability for Core than

S-Phys. Of note, for 1-h precipitation, almost all

members in both ensembles in 2016 are greater than

the observations (black curve), with the majority sig-

nificantly so, except in the period of roughly 17–23 h in

Core and 17–30 h in S-Phys. The same is true in 2017

(not shown). In both years, the increased inter-

member variability in Core does not translate into a

better representation of the observations within the

envelope. For heavier precipitation, the 90th percen-

tile values indicate similar behavior in both years (not

shown). When averaging members for each sub-

ensemble together (dashed dark gray line in Fig. 4),

the value for both ensembles was also often signifi-

cantly too high compared to observations, with Core

at most times showing an increase in error by a mag-

nitude of roughly 0.1mm. Again, the 90th percentile

averaged values (not shown) were too high at most

times compared to the observations, with Core con-

tinuing to have larger error. As can be inferred from

Fig. 4, the highest bias was present in both ensembles

in the late night andmorning hours when convection is

normally weakening. During the period where severe

convection is most likely, roughly between forecast

hours 21 and 30, the S-Phys members did not show

significant bias, while both ensembles had a small

negative bias around the time of a diurnal minimum

in observed precipitation (midday, roughly forecast

hours 17–21).

The median CREF values for each member of both

ensembles are displayed in Fig. 5. The increased vari-

ation in Core is apparent in these plots for both 2016

and 2017, and unlike with 1-h precipitation, the in-

creased member variability results in a much better

representation of the observations within the envelope

of Core. While on the other hand, in both years, the

observations fell outside any member prediction in

S-Phys nearly all of the time. It should be noted, how-

ever, that although the observations were better cap-

tured in Core, some of its members significantly

overestimated the reflectivity values. It can be seen that

the median values were highest in the MY members

during the afternoon hours when convection typically

initiates. At these times, the MY values were signifi-

cantly higher than all other members. Of note, for S-

Phys, reflectivity values by member were often less

than observations in 2016, significantly so about half

the time for all members, but almost always signifi-

cantly greater than observations in 2017. This might

indicate that the use of theMYNNPBL scheme and the

RUC land surface scheme resulted in more intense

FIG. 6. The 90th percentile of composite reflectivity values for the$30-dBZ threshold averaged among the ensemble members for the

Core (orange) and S-Phys (purple) ensembles in (left) 2016 and (right) 2017. Observed value shown in black. The vertical bars represent

95% CIs.
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reflectivity, but further work is needed to quantify this

impact fully, as differences in predominant storm type

between the two years could also result in some

changes. A clustering of reflectivity values was also

noted for the 90th percentile values (not shown) where

the S-Phys members in both years were usually signif-

icantly too high compared to observations.

Similar behavior is apparent in the averaged values

for the 90th percentile for CREF in Core (Fig. 6) for

2016, with the average being significantly too high

compared to observations. However, in 2017, unlike

for median CREF (Fig. 5), the average for Core

agreed better with observations at most times after

forecast hour 10, although it was still significantly

higher at many lead times after forecast hour 17. For

S-Phys, the 90th percentile was significantly too high

during the daytime hours but close to the observations

overnight in both years. Both ensembles showed a

peak in values during the afternoon, around forecast

hours 20–22, which was also observed, although usu-

ally the ensembles were too intense with the peak.

Interestingly, observations did not show as pro-

nounced a peak in the median values during the

afternoon (Fig. 5), whereas the ensembles do depict a

strong peak, thus increasing errors at that time, except

for S-Phys in 2016.

Total areas within all MODE objects for each year

for CREF ($30 dBZ) are shown in Fig. 7. As would be

expected, these results should be somewhat similar to

the traditional metric of frequency bias. Much greater

variability existed in the total areas of objects in

the Core ensemble compared to S-Phys. In 2016,

the control member (in red) lay closest to the ob-

served value (black) at nearly all times and was not

FIG. 7. Areas (grid squares) within the MODE objects for (left) Core and (right) S-Phys members in (top) 2016 and (bottom) 2017 for

the$30-dBZ threshold. Colors of curves representing differentmembers follow same notation as in Fig. 1 for 2016 and Fig. 3 for 2017, with

observations in black. The vertical bars represent 95% CIs for selected curves (core01, core04, core08, and core09 in top left, core02,

core04, core08, and core10 in bottom left, s-phys03 in top right, and core02 in bottom right).
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significantly different from observations at most times. In

2017, thiswas not the case as often, implying aworsening in

the forecasts of areal coverage when the PBL scheme

and land surface schemes were switched to MYNN and

RUC, respectively. Overall, the Core ensemble did a

better job of capturing the observed value within the

envelope of members. This is especially true in 2017

when Core always had the observations within the

envelope, usually around the middle of the envelope.

For S-Phys, the observations were frequently outside

the envelope of nearly all members, which under-

estimated areal coverage significantly (except the

control member) in 2016 and frequently significantly

overestimated the areal coverage in 2017. Again, this

implies a potentially large impact from the change

made in the PBL and land surface scheme in 2017. It

should be noted in both years that a distinct clustering

by microphysics scheme occurs in Core with curves

rarely crossing each other and the values being sig-

nificantly different at most times. This suggests that

different physics combinations have very systematic

differences in the amount of reflectivity $ 30 dBZ

with limited variability over time (i.e., one member

will always have broader areas of reflectivity; another

member will always have much less). Such behavior

again is concerning and provides further evidence of

deficiencies when ensemble membership is based on a

multiphysics approach as each member would not be

equally likely to verify.

An analysis of the median area across all objects

defined using a $30-dBZ CREF threshold (Fig. 8)

looks much different from Fig. 7. The area of observed

objects peaked around 0500 and 1100–1300 UTC,

likely associated with large nocturnal MCSs, with a

FIG. 8.Median area (grid squares) within theMODEobjects for (left) Core and (right) S-Physmembers in (top) 2016 and (bottom) 2017

for the$30-dBZ threshold. Colors of curves representing different members follow same notation as in Fig. 1 for 2016 and Fig. 3 for 2017,

with observations in black. The vertical bars represent 95% CIs for core01 in left panels.
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smaller peak in the afternoon. Objects defined using

CREF were much smaller in all ensemble members

around the time of the observed 0500 UTC peak, but the

members did show a peak around the 1100–1300 UTC

time period, albeit in most members the area was still

significantly less than that observed. Unlike many other

MODE attributes, variation in the median object areas

seems comparable in S-Phys to Core.

Objects defined using a precipitation threshold

of $2.54mm (not shown) varied greatly in size from

hour to hour during the first 18 h of the forecast with

no substantial differences in the two ensembles; however,

in the final 18 h of the forecast, the S-Phys members

generally tended to produce objects smaller than those

in Core and those observed.

Although areas differed among the Core members,

the differences were far less than for CREF, with a

roughly 60%–100% variation from the median in Core

for CREF but only a 10%–20% variation in Core for 1-h

precipitation. For S-Phys at most times, variations were

roughly only 10% for both CREF and 1-h precipitation

(the one exception was in 2016 where the control run

deviated more from the other 8 members). Nonetheless,

Core still did a better job of capturing the observations

within its envelope.

For 1-h precipitation objects defined by a threshold

of $2.54mm, the number of objects identified in all

members of both ensembles exceeded the number of ob-

served objects at a majority of lead times during 2016 and

2017 (Fig. 9). This was especially true during the afternoon

FIG. 9. Total count of MODE 1-h precipitation objects for (left) Core and (right) S-Phys members in (top) 2016 and (bottom) 2017 for

the $2.54mm threshold. Colors of curves representing different members follow same notation as in Fig. 1 for 2016 and Fig. 3 for 2017,

with observations in black. The vertical bars represent 95% CIs for selected curves (core01 and core09 in upper left, core01 in lower left,

and s-phys07 in lower right).
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and evening hours, when the differences were statistically

significant for many members. In 2016, several Core

members had substantially higher numbers of objects than

any S-Phys members during convectively active times of

day, although the large CI shown for core09 in Fig. 9 in-

dicates the differences were not statistically significant. In

general Core had a larger variation of counts of objects

among members than in S-Phys. However, in 2017, the

counts by member were much more similar between

the two subensembles. Of note, a time offset existed in the

ensembles, evidence that the models are generally a few

hours too early with convective initiation.

For CREF, S-Phys members had smaller variability

in their counts of objects, and showed counts similar to

observations during certain portions of the day in 2016

with significantly too many objects forecast in the

afternoon/evening hours and throughout much of the

period in 2017 (Fig. 10). Core members separated

into three clusters based on the microphysics scheme

used, particularly in 2016, with MY members having

roughly twice as many objects as observed, P3 mem-

bers often only having half of the observed numbers,

and Morrison members roughly matching the ob-

served numbers after the first 6 h of the forecast pe-

riod. The differences for MY and P3 were statistically

significant at most times. Thus, much larger variability

existed in the Core ensemble object counts than in

S-Phys, and as might be expected, the observations were

better contained within the envelope of its solutions.

The general displacement behavior for the 1-h

precipitation objects were examined using the cen-

troid attribute (center of mass) derived from MODE

FIG. 10. Total count of MODE CREF objects for (left) Core and (right) S-Phys members in (top) 2016 and (bottom) 2017 for the

$30-dBZ threshold. Colors of curves representing different members follow same notation as in Fig. 1 for 2016 and Fig. 3 for 2017, with

observations in black. The vertical bars represent 95% CIs for selected curves (core01, core04, and core09 in top left, core01 in top right,

core02 and core04 in bottom left, and core02 in bottom right).
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and calculating the centroid distance between the

matched forecast and the observed objects (Fig. 11).

For the west–east aspect, a negative (positive) value

indicates a westerly (easterly) displacement and for

the south–north aspect a negative (positive) value

indicates a southerly (northerly) displacement. A

majority of all examined ensemble members dis-

played westward displacement throughout the fore-

cast period for 2017, although the trend was not

statistically significant (thus no CIs are shown in

Fig. 11). Early in the forecast period, members of both

subensembles showed a slight easterly displacement

followed by a sharp change toward a westerly dis-

placement. This is potentially due to the fact that

ongoing convection at the time of the 0000 UTC ini-

tialization was not well assimilated in the model and

lacks sufficient cold pools to translate the storms

eastward. Squitieri and Gallus (2019, manuscript

submitted to Wea. Forecasting) found that cold pools

were smaller, more shallow, and weaker in 3-km

horizontal grid spacing simulations of MCSs than in

1-km simulations, while Verrelle et al. (2015) also

found that cold pools were smaller in scale in coarser

grid simulations than in finer ones. More investigation

is required to confirm that cold pool deficiencies were

present in the current sample of events. In general, the

2016 counterparts had somewhat less westward displace-

ment and slightly less member variability (not shown).

In terms of the north–south displacement (Fig. 11), en-

sembles start out together and variance and error gradually

increases to the south with more variance during the pe-

riod of waning convection in morning hours. Then as

convection intensifies in the afternoon, the displacement

trend reverses, decreasing southward displacement trends

FIG. 11. Centroid displacement for 2017 in the (top) west–east direction and (bottom) south–north direction for (left) Core and (right)

S-Phys members for 1-h precipitation objects for the$2.54-mm threshold. Colors of curves representing different members follow same

notation as Fig. 3, with observations in black.
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northward and increased variance among members con-

tinues into the evening. This shift to a northerly bias was

more clearly noted in S-Phys. While the shift to the north

persisted through the later forecast period in 2017, it was

more transient in 2016 and began to turn southward again

in the last few forecast hours (not shown). The north–south

displacements were generally not statistically significant.

Overall, displacement in CREF had the same trend as

the results described for 1-h accumulated precipitation

(not shown).

c. Traditional ensemble verification

ROC curves, areas under the curves, reliability

diagrams, and Brier scores were examined for both

ensembles, and generally indicated only a slight ad-

vantage at best for the Core ensemble. ROC curves

for both years can be seen in Fig. 12 for two 1-h rainfall

thresholds. In 2016, the two curves were nearly

identical for $2.54mm, while Core had a slight ad-

vantage for $6.35mm. Although not shown, Core

had a bigger advantage in area under the ROC curve

at most times for $0.254mm. The improvement of

Core over S-Phys was slightly larger in 2017 for

both thresholds. In both years, skill (area under the

ROC curve . 0.7) existed at a majority of times for

the $0.254- and $2.54-mm thresholds. Skill was only

present for the first 6–12 h of the forecast for the

$6.35-mm threshold (not shown). ROC areas were

generally 0.01–0.02 greater for 3-h precipitation (not

shown) with skillful forecasts extending to later lead

times for the 6.35-mm threshold.

Reliability diagrams for 1-h precipitation suggested a

similar small advantage for the Core ensemble in

2016 (Fig. 13), but both ensembles overestimated the

probabilities except for 0%, with curves lying well

to the right of the diagonal lines. Skill relative to

FIG. 12. ROC curves for Core (red) and S-Phys (purple) in (top) 2016 and (bottom) 2017 for (left) $2.54- and (right) $6.35-mm 1-h

precipitation thresholds.
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climatology only existed in 2016 for both ensembles

for 1-h precipitation above $0.254mm. Some skill was

present for 3-h precipitation at the 2.54-mm threshold

(not shown). The Core ensemble performed better in

2017 and showed some skill for 1-h precipitation even

at the $2.54-mm threshold. For 3-h precipitation, the

Core ensemble was relatively reliable with its curve

close to the diagonal line (not shown). The difference

in performance between Core and S-Phys was much

greater in 2017 than in 2016, perhaps suggesting again

that the change in PBL scheme and land surface

scheme harmed the S-Phys ensemble in 2017.

Brier Scores for both 1-h precipitation and CREF

showed the same behavior as that found with the ROC

curves and reliability diagrams, with limited differ-

ences between the two models (not shown).

d. Convective initiation verification

The investigation of convective initiation found

there was less variation in the location of the initiation

in S-Phys than in Core, but also smaller peak errors on

average among the members of S-Phys for the 10 cases

(Fig. 14). Both ensembles had the observed location

within the envelope of member solutions in 6 of the

10 cases. Although this subset of 10 events, chosen

based on relatively pristine daytime initiation of

substantial convective systems, represents only a very

small subsample of all objects during 2016, some

similarities can be seen with the displacement errors

shown for all objects in 2017 (Fig. 11) during the af-

ternoon hours. Specifically, the difference in spread in

the latitudinal direction for these convective initia-

tion cases between the two subensembles (Fig. 14)

was more than the difference in longitudinal spread.

Figure 11 suggests overall a slightly greater variation in

north–south displacement errors among the Core mem-

bers than the S-Phys members during the afternoon.

4. Discussion and summary

Two CLUE subensembles were examined in detail

to study the impact of including mixed physics in an

ensemble that already used perturbed IC/LBCs. Com-

parisons were made using 22 cases of 1- and 3-h pre-

cipitation and 17 cases of CREF in 2016, as well as 12 cases

of both precipitation and CREF from 2017 CLUE output.

Multiple verification metrics were examined.

In most cases, the mixed physics ensemble (Core)

had noticeably more variation in verification scores

than the Single physics (S-Phys) ensemble. Differ-

ences in values were larger when evaluating CREF as

opposed to precipitation, with much more variation,

often statistically significant, showing up in the

reflectivity fields. This is likely because small changes

in assumed hydrometeor size distributions can cause

large changes in model reflectivity fields but negligible

changes in precipitation rates (J. Milbrandt, Envi-

ronment and Climate Change Canada, 2019, personal

communication). In most cases, but not all, the in-

creased variability in Core better captured the ob-

served value, and S-Phys appeared to be substantially

underdispersive at most times. The ensemble average

value agreed better with observations for Core com-

pared to S-Phys. However, especially for reflectivity,

this better average value came about because mem-

bers like those that used MY microphysics, which had

large positive errors in intensity and areal coverage,

tended to balance negative errors found in many of

FIG. 13. Reliability curves for Core (red) and S-Phys (purple) for a precipitation threshold of$0.254mm in 1 h for (left) 2016 and (right)

2017. Histogram shows the counts for each forecasted probability. Black solid diagonal line represents perfect reliability; purple dashed

diagonal line is the no skill line. Horizontal purple dashed line represents climatology.
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the other configurations. A summing of the errors

from individual members would reveal Core to be

worse, thus, further evidence of deficiencies when

ensemble membership is based on a multiphysics ap-

proach. Traditional ensemble measures gave a slight

advantage to the mixed physics ensemble, but sug-

gested very little skill for 1-h precipitation. More skill

was present for 3-h precipitation.

A similar increase in variability was shown in an evalu-

ation of 10 cases of pristine convective initiation, new

convection forming relatively far from existing convection,

from the 2016 sample of cases. However, despite the in-

creased spread in latitude and longitude positioning of

initiation in Core, both ensembles correctly captured the

observed location within their envelope of solutions in

60% of the cases. Thus, the performance of the two en-

sembles might be regarded as equal.

The results from this study raise several questions.

First, is the increased variability in Core a benefit to fore-

casters? Second, do the slight advantages shown for Core

in some skill measures justify the identified issues that are

associated with mixed-physics ensembles? Third, with

such strong biases present when some microphysics

schemes are used, would a better designed mixed physics

ensemble that uses different microphysics schemes that

have less extreme biases, or bias corrections made to the

schemes used here, result in a more obvious improve-

ment in skill over the single physics ensemble? Future

work should explore the impact of bias corrections,

particularly to the CREF values, and examine the per-

formance of the two ensembles for other variables that

are used to provide guidance to severe weather fore-

casters, such as updraft helicity and peak surface wind.

In addition, future work should explore the use of a

stochastically perturbed single physics ensemble as a

means to reap some of the benefits associated with

a mixed physics ensemble (e.g., increased spread) while

avoiding problems associated with higher costs of

maintaining multiple physics packages.
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